

MARS SCIENCE LABORATORY ROVER SYSTEM THERMAL TEST

Keith Novak, Joshua Kempenaar, Yuanming Liu & Brenda Dudik

Jet Propulsion Laboratory/California Institute of Technology 42nd International Conference on Environmental Systems

July 15 – 19, 2012, San Diego, CA

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

Mars Science Laboratory Project

- Mission Overview
- MSL Spacecraft
- MSL Rover Configuration
- MSL Rover System Thermal Test
 - Test Objectives
 - Test Results
 - Model Correlation
 - Flight Predictions
- Major Conclusions

ICES 2012 2/24

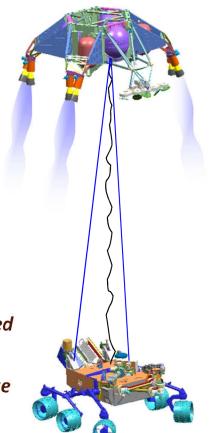
Mission Overview

Jet Propulsion Laboratory

Mars Science Laboratory Project

CRUISE/APPROACH

- 8½-month cruise
- Arrive August 5, 2012

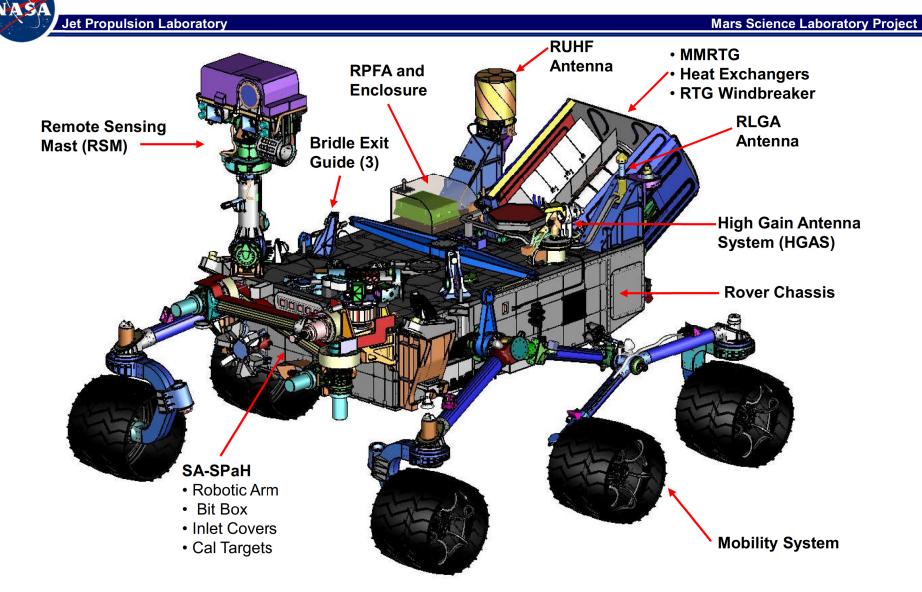


ENTRY, DESCENT, LANDING

- Guided entry and powered "sky crane" descent
- 20 ×25-km landing ellipse
- Access to landing sites
 ±30° latitude, <0 km
 elevation
- 900-kg rover

SURFACE MISSION

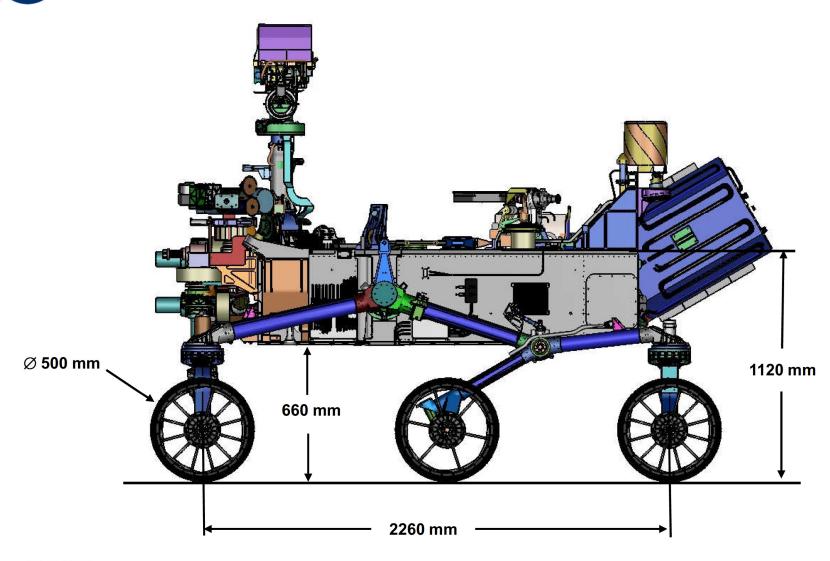
- Prime mission is one Mars year (669 Sols)
- Latitude-independent and long-lived power source
- Ability to drive out of landing ellipse
- 72 kg of science payload
- Direct (uplink) and relayed (downlink) communications
- Fast CPU and large data storage


• Atlas V (541)

Launched

Nov. 26,

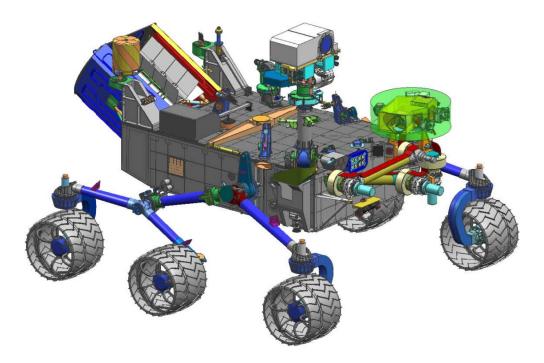
2011


Rover Traverse Configuration

ICES 2012 4/24

Jet Propulsion Laboratory

Mars Science Laboratory Project



ICES 2012 5/24

Test Summary

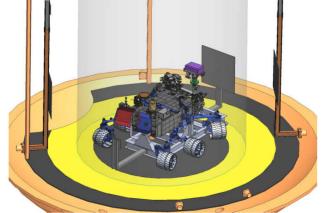
Jet Propulsion Laboratory

- The 15-day MSL Rover System Thermal Test was conducted from March 9-24, 2011 in the B-150, 25-ft Space Simulator at JPL.
- All primary test objectives were successfully met.
- The rover thermal design performed extremely well during this test and no violations of Allowable Flight Temperatures were observed.

System Thermal Test Objectives Were Met

Jet Propulsion Laboratory

- Primary Objectives
 - Gather sufficient data from multiple landed environments to permit analytical thermal math model correlation
 - All thermal balance and transient environment cases completed
 - Verify functionality of thermal hardware (heaters, thermostats, PRTs, SLI blanket, rover HRS system)
 - Thermal system performance better than conservative model predicts
 - Verify that the Rover functions properly within specified performance requirements in the simulated Mars surface environment
 - No AFT limit violations during functional tests
 - Extrapolate a correlated analytical model to flight environment to validate Rover thermal design post test
 - Completed
 - Worst-case flight predicts generated for Gale Crater landing site show plenty of temperature margin
 - Hot case RAMP predict = 42C (8C margin to max AFT of 50C)
 - Cold Case RAMP predict = -13C (27C margin to min AFT of -40C)


Why Can't We Validate the Rover Thermal Design in Test?

Jet Propulsion Laboratory

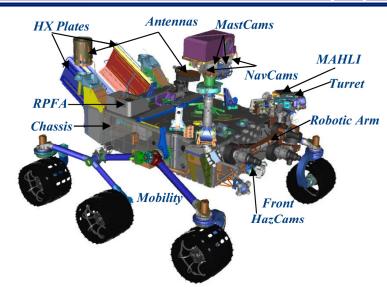
Mars Science Laboratory Project

- This test was <u>not</u> a direct validation of the rover surface thermal design. There are many elements of the Mars thermal environment that we cannot simulate inside a thermal chamber on the Earth.
 - Mars acceleration due to gravity is 3/8G,
 - free convection coefficients in the chamber will be higher than those experienced on Mars
 - Chamber backfilled with 10 Torr GN2, not 10 Torr CO2 (Mars atmosphere)
 - GN2 (k = 0.026 W/m*K at 300K)
 - GN2 has a 50% higher thermal conductivity than CO2 (k= 0.017 W/m*K at 300 K)
 - gas conduction and free convection in the chamber will be greater than what is experienced on Mars
 - No dust coverage or degraded thermal paints on the outside of the vehicle
 - · white paint properties will be at their BOL values,
 - Solar simulator in the 25 foot chamber will not track (in elevation and azimuth) across the sky and it will not have a diffuse component
 - No wind simulation
 - No independent sky, ground and atmosphere temp control in chamber
 - chamber wall and floor shrouds will be controlled to same temp
 - atmosphere temperatures will be monitored but not controlled

8/24

Tests of Design Sensitivity

Jet Propulsion Laboratory


- Effect of GN2 versus vacuum
 - Compare cases #5 (Cold Thermal Balance at -105C) and #7 (Cold Vacuum Test at -105C)
- Effect of RTG Power (Q = 1315 W to 1821 W)
 - Compare case #5 (Cold Thermal Balance at -105C) to case #11B (Functional #5 at -80C)
- Effect of Solar Flux (Q" = 0 W/m² to 700 W/m²)
 - Compare case #10 (Functional Test #4 Env't at -80C) and Case #11A (Hot Thermal Balance at -80C)
- Effect of Shroud Temp (+20C to -105C)
 - Multiple cases

Test Article Description

Jet Propulsion Laboratory

Mars Science Laboratory Project

- Rover consists of the following flight hardware:
 - 1. All Rover structures, and mechanisms: chassis, RAMP, mobility, actuators
 - 2. Entire Surface HRS thermal system: RIPA, HX Plates, RAMP
 - 3. Avionics components: flight computer, power boxes, battery, telecom
 - 4. All engineering cameras: HazCams, NavCams
 - Science instruments: MAHLI, MastCams, ChemCam, APXS, REMS, RAD, CheMin, SAM, DAN
 - 6. Sample Acquisition/Sample Processing and Handling (SA-SPaH) hardware: Robotic Arm, Drill, CHIMRA, 3 Inlet Covers, 2 Contact Sensors, 2 Bit Boxes
 - 7. RTG simulator

RAMP (chassis internal)

10/24

Rover Thermal Hardware

NASA

Jet Propulsion Laboratory

- 58 Flight Heater Circuits Controlled by Rover
 - Custom designed Kapton film heaters from Tayco
 - FSW commandable or mechanical thermostat controlled
 - Primary and secondary heater circuits
- 22 Flight Mechanical Thermostats
 - Internal to RAMP: RBAU (8), CCBU (2), RIPA fault protection (4)
 - External: CCMU (4), RPFA (4)
 - Honeywell TS 700 Series
- 219 Honeywell, 1000-ohm, 2-wire PRTs
 - Data was piped from GDS to TDAS for thermal use
 - Nearby thermocouple measurements used to validate PRT measurements
 - Primary and backup PRTs
- Rover Heat Rejection System (HRS)
 - RAMP, Hot & Cold Plates, RIPAS, bypass valves

Test Instrumentation

Jet Propulsion Laboratory

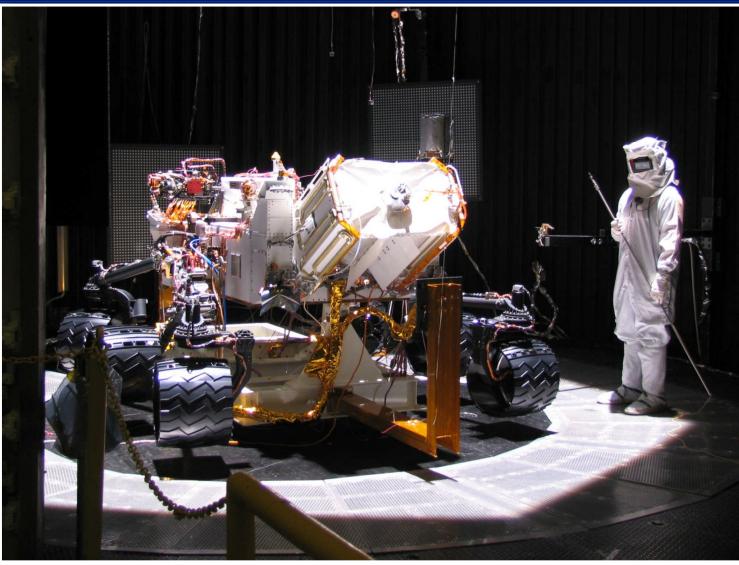
- Thermal Data Acquisition System (TDAS) LabView
 - 5 TDAS computers (2 for TCs and GSE power supplies, 1 for computed channels, 2 as view-only systems)
 - Scan and record intervals set at 1 minute
 - Connected to UPS & back-up generator
- Heaters powered & controlled by GSE Power Supplies
 - 2 shunt (FLT), 3 CCBU decontamination (FLT), 2 near RAMP too-hot thermostats (TEST)
- 386 Type E, 26-gage Thermocouples
 - 357 on Rover, 11 for chamber atmosphere, 18 on GSE
 - Used for AFT limit and PRT flight sensor verification, near flight thermostat and heater locations, to determine temperature gradient across interfaces, to aid in model correlation
- Additional 150 Thermocouples for Chamber Facility Measurements

Test Setup – Rover in Chamber

Jet Propulsion Laboratory

Mars Science Laboratory Project

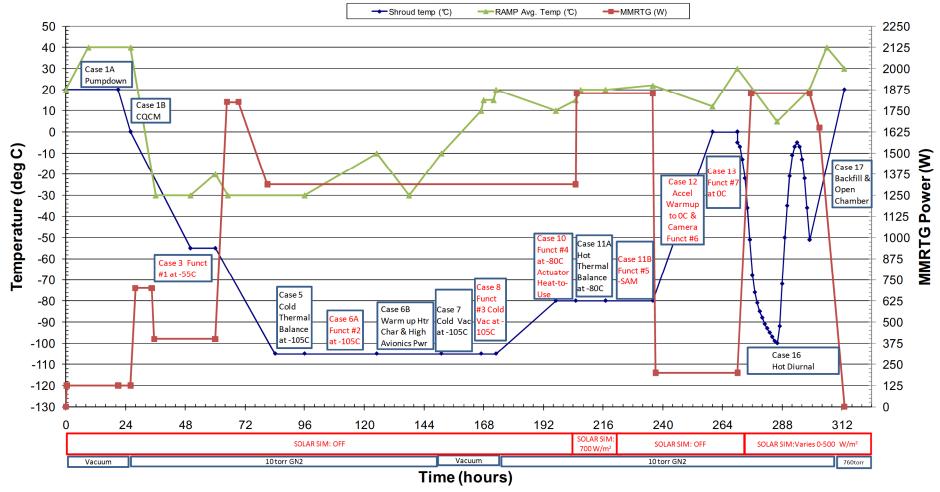
Rover Surface Configuration
Mounted on I-beam support
frame 6 in. above
chamber floor
Powered by Umbilical GSE
Power Supply
9 Pyro firings during STT


9 Pyro firings during STT

– HGA, 3x HazCam Covers,

- HGA, 3x HazCam Covers, RSM, Mobility Bogie Pose, Robotic Arm turret and elbow, Bit Box
- Other pyros fired in B-144
 B-150 prior to chamber installation
- Deployments
 - Hazcam covers, HGA, RA, RSM
- Solar simulator lens created a hexagonal spot – 15 feet, flat to flat

Surface System Environmental Test


Jet Propulsion Laboratory

Jet Propulsion Laboratory

Mars Science Laboratory Project

MSL Rover STT Timeline

Steady State Thermal Environments

Jet Propulsion Laboratory

Mars Science Laboratory Project

Steady State Thermal Balance Cases

- Case 1A Pumpdown & Rover Outgas
 - hot case with shrouds at +20C, vacuum environment, low RTG power (500W) and high RAMP power (363W)
- <u>Case 5</u> Cold Thermal Balance at -105C
 - cold case with shrouds at -105C, moderate RTG power (1315W) and low RAMP power (30W)
- Case 7 Cold Vacuum Test at -105C
 - cold case with shrouds at -105C, moderate RTG power (1315W) and low RAMP power (30W)
- Case 11A Hot Thermal Balance at -80C
 - Hot case with shrouds at -80C, solar sim on at 700W/m², high RTG power (1600W) and high RAMP power (230W)
- Additional Functional cases that went to steady state due to long duration (Case 3 – Functional #1 went for 23 hours)

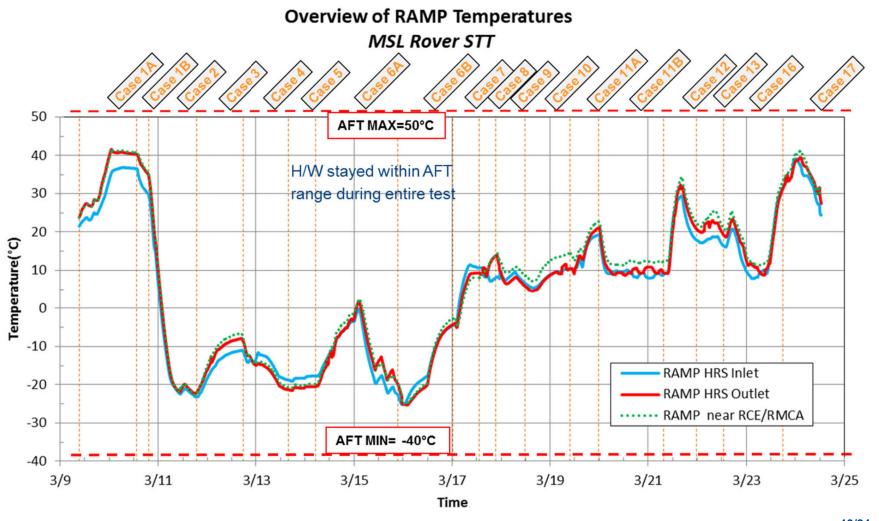
Transient Thermal Environments

Jet Propulsion Laboratory

Mars Science Laboratory Project

Transient Cases:

- Case 2 Accelerated Cooldown to -55C:
 - Global cooldown with shrouds ramping from 0C to -110C
- <u>Case 4</u> Accelerated Cooldown to -105C:
 - Global cooldown with shrouds ramping from -55C to -125C
- Case 6B Warmup Htr Thermal Char. & Step Change in RAMP Avionics Power:
 - Actuator & Camera Warmup with shrouds held at -105C; RAMP response to step change in power from 30W to 200W
- Case 9 Accelerated Warmup to -80C:
 - Global warmup with shrouds ramping from -105C to -60C
- <u>Case 10</u> Actuator & Camera Heat–to-Use:
 - Actuator & camera warmups with shrouds held at -80C
- Case 11A Hot Thermal Balance
 - External rover hardware exposure to step change in solar load from 0 W/m² to 700 W/m²
- Case 12 Accelerated Warmup to 0C:
 - Global warmup with shrouds ramping from -80C to +20C


HRS performance in Rover STT

Jet Propulsion Laboratory

- In the worst-case <u>cold</u> tested conditions, the RAMP component interfaces were ~3-10 C <u>warmer</u> than predicted
- In the <u>hot</u> thermal balance test conditions, the <u>hottest</u> RAMP component interfaces were ~0.2 C <u>cooler</u> than predicted
- The temperature difference between HRS fluid inlet & outlet (in RAMP) during test was smaller than predicted
- RAMP was very uniform in temperature during STT (~ 2 C gradient in STT vs. ~7 C predicted)

Overview of RAMP Temperatures

Jet Propulsion Laboratory

Actuator/Camera Results

Jet Propulsion Laboratory

Mars Science Laboratory Project

Actuator and camera warmup heaters have been adequately sized:

- Capable of warming up actuators and cameras above AFT in cold environment (-105C shroud, no solar) within expected time duration;
- Capable of maintaining temperatures with proper duty cycle.

Verified Rover's capability to do warmup heater control:

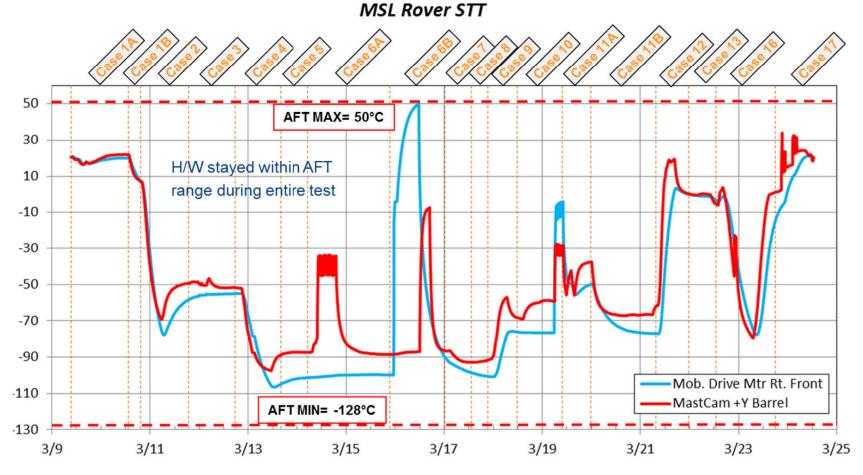
- Verified heater switches controlled by both RPAM-A and RPAM-B;
- Verified FSW heater control in auto mode with selected control PRT's and setpoints;
- Pre-heat durations were consistent with pre-STT predicts.

Actuators and cameras operated within allowable temperatures:

- Target temperatures and pre-heat duration followed pre-STT model predicts;
- Actuators and cameras were warmed up above the min op temperatures (min op Qual, FA, or AFT limits) before the functional (motion or imaging) tests were conducted.

Obtained thermal data for thermal model correlation:

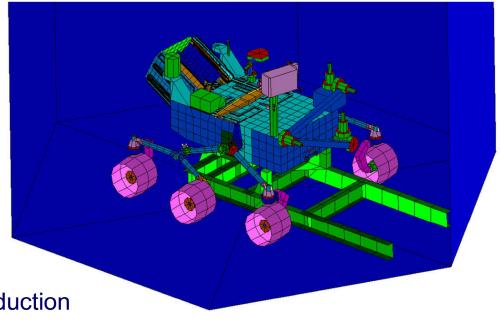
- Actuators: Mobility, HGA, and Inlet Covers.
- Cameras: MAHLI and MastCams.


Obtained thermal data for checking previously correlated models:

- Actuators: RSM, CHIMRA, Drill, and RA.
- Cameras: HazCams and NavCam (MER).

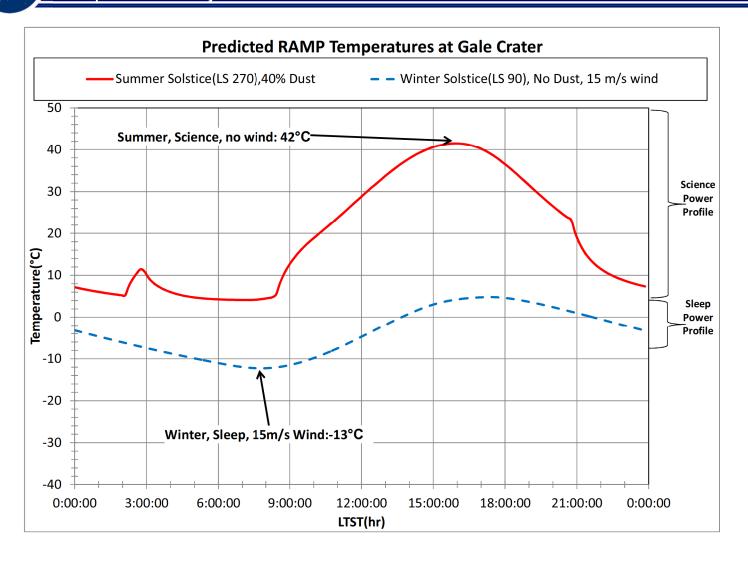
Jet Propulsion Laboratory

Mars Science Laboratory Project


Overview of External Temperatures

Thermal Model Correlation

Jet Propulsion Laboratory


- Parameters which were modified to improve rover system-level model correlation with test results included:
- Thermo-optical Properties
 - Emissivity
 - Absorptivity
- Radiation Blockage
- Thermal Conductances
 - Interfaces
 - Cables
 - CO₂ thickness for Gas Conduction
- Convection Coefficients
- Effective Thermal Mass

Flight Predictions

Jet Propulsion Laboratory

Mars Science Laboratory Project

8℃ of margin to Max AFT limit of 50℃

27℃ of margin to Min AFT limit of -40℃

ICES 2012 23/24

Major Conclusions

Jet Propulsion Laboratory

- It was a very successful test
- All primary test objectives were met.
- Rover thermal design performed well during this test and no violations of Allowable Flight Temperatures were observed.
- Model correlation work has been done for rover thermal system, actuator & camera thermal models

- Flight predicts have been done
 - Thermal performance predicts for Gale Crater Landing Site (4.5 degrees South latitude) are excellent
- Looking forward to an exciting and successful surface mission Landing on Aug. 5, 2012, 10:30PM PDT
 Sol 0, 3:03PM LMST in Gale Crater

Acknowledgements

Jet Propulsion Laboratory

Mars Science Laboratory Project

- The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
- The authors wish to acknowledge the many engineers and scientists who worked collaboratively on the Mars Science Laboratory System Thermal Test and brought it to a successful conclusion.

ICES 2012 25

23RD THERMAL & FLUIDS **ANALYSIS WORKSHOP (TFAWS)**

Promoting Excellence in all Aspects of Design, Analysis, Build, and Test August 13-17, 2012 • Westin Pasadena Hotel • Pasadena, CA

Purpose: to encourage knowledge sharing, professional development, and networking throughout the thermal and fluids engineering community within NASA and the aerospace industry at large.

- Active thermal/life support
- Passive thermal
- Aerothermal
- Interdisciplinary thermal/fluids
 Hardware demonstrations

Program Includes

- Paper sessions
- Hands-on software training
- Technical short courses
- Tours of NASA JPL
- Banquet & guest speakers

Audience

- Industry
- Government
- Educators
- International guests welcome!

Students

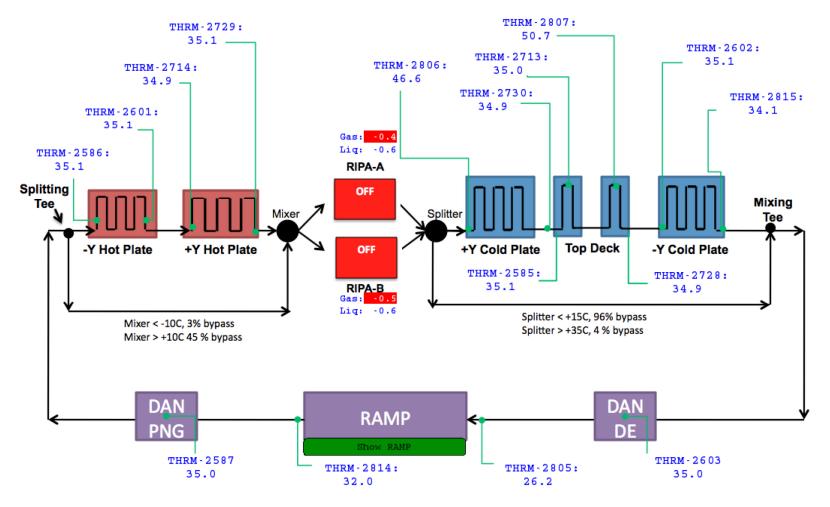
Hosted by NASA Jet Propulsion Laboratory (JPL)

Registration is free, sponsored by NASA Engineering and Safety Center (NESC)

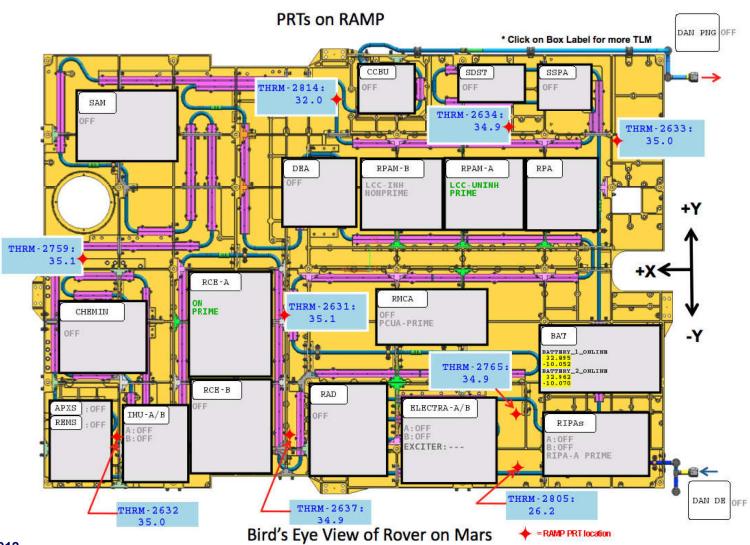
More information at http://tfaws.nasa.gov/TFAW\$12/

Abstracts due: May 18

Papers due: July 20


Jet Propulsion Laboratory

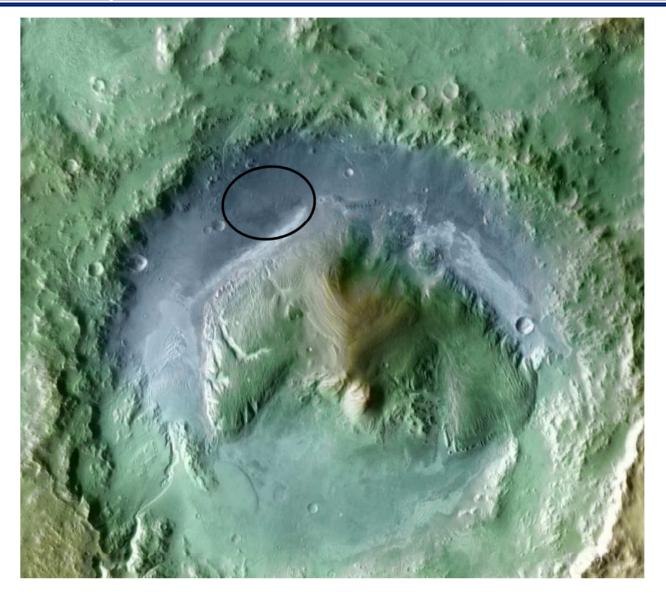
Mars Science Laboratory Project

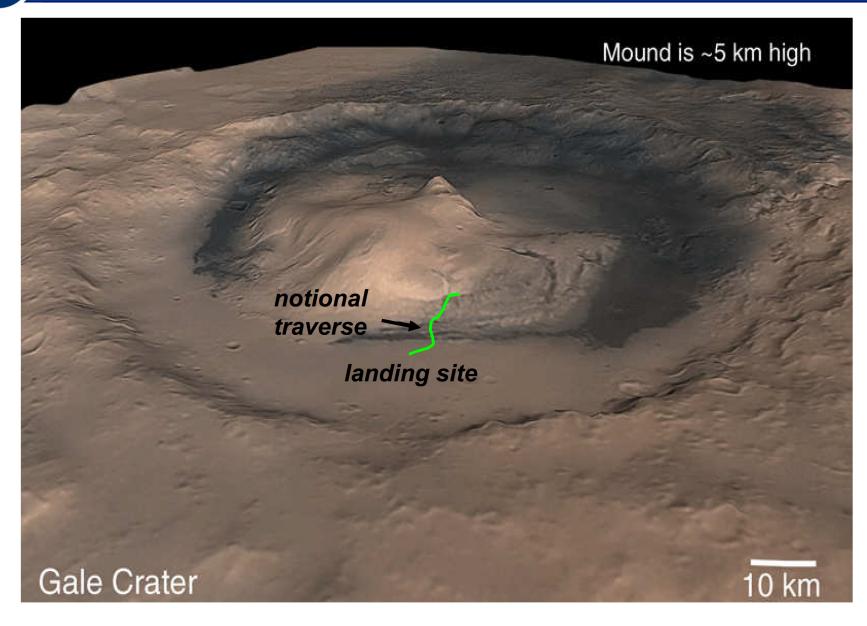

MSL Rover STT Status

MSL Rover ST1	Test Description	Estimated	Actual	From:	То:
		Duration (hrs)	Duration (hrs)	m/d/11 h:mm AM	m/d/11 h:mm AM
	Late Start - Planned time was 8:00am	0.0	0.4	3/9/11 8:00 AM	3/9/11 8:23 AM
Test Case 1A	Pumpdown, Rover Outgas & Backup Pump Fault Protection Checkout	21.0	29.1	3/9/11 8:23 AM	3/10/11 1:30 PM
Test Case 1B	CQCM Measurement	5.0	6.0	3/10/11 1:30 PM	3/10/11 7:30 PM
Test Case 2	Accelerated Cooldown to -55C	24.0	23.3	3/10/11 7:30 PM	3/11/11 6:45 PM
Test Case 3	Functional #1: Deployment Verification at -55C	12.0	22.7	3/11/11 6:45 PM	3/12/11 5:30 PM
Test Case 4	Accelerated Cooldown to -105C Environment	24.0	23.5	3/12/11 5:30 PM	3/13/11 5:00 PM
Test Case 5	Cold Thermal Balance at -105C Survival Heater/T'stat Checkout, HGA Warmup Htr Char Test	12.0	13.1	3/13/11 5:00 PM	3/14/11 6:07 AN
Test Case 6A	Functional Test #2 Environment @ -105oC [Cold Case]	29.0	39.2	3/14/11 6:07 AM	3/15/11 9:18 PN
Test Case 6B	Warmup Heater Thermal Characterization & Cold Thermal Balance with High RAMP Avionics Power	26.0	26.7	3/15/11 9:18 PM	3/17/11 12:00 AN
Test Case 7	Cold Vacuum Test at -105C	16.0	13.0	3/17/11 12:00 AM	3/17/11 1:00 PM
Test Case 8	Functional #3 - Cold Vacuum Test at -105C	6.0	8.5	3/17/11 1:00 PM	3/17/11 9:30 PM
Test Case 9	Accelerated Warmup to -80C	24.0	15.0	3/17/11 9:30 PM	3/18/11 12:30 PM
Test Case 10	Functional Test #4: Environment @ -80C Actuator Heat-to- Use & Articulate	8.0	21.5	3/18/11 12:30 PM	3/19/11 10:00 AN
Test Case 11A Hot Thermal Balance Test at -80C		12.0	13.5	3/19/11 10:00 AM	3/19/11 11:30 PM
Test Case 11B Functional #5 - SAM on 20C RAMP		19.0	32.0	3/19/11 11:30 PM	3/21/11 7:30 AN
Test Case 12	Accelerated Warmup to 0C & Camera Functional #6 at -40C during Transition	24.0	16.5	3/21/11 7:30 AM	3/22/11 12:00 AN
Test Case 13	Functional Test #7: Environment @ 0oC [Hot Case]	10.0	13.0	3/22/11 12:00 AM	3/22/11 1:00 PN
Test Case 14	deleted	0.0	0.0	3/22/11 1:00 PM	3/22/11 1:00 PM
Test Case 15	deleted	0.0	0.0	3/22/11 1:00 PM	3/22/11 1:00 PN
Test Case 16	Hot Diurnal Test	29.0	29.0	3/22/11 1:00 PM	3/23/11 6:00 PN
Test Case 16B	deleted	0.0	0.0	3/23/11 6:00 PM	3/23/11 6:00 PN
Test Case 17	Backfill and Open Chamber	14.0	17.5	3/23/11 6:00 PM	3/24/11 11:30 AN
	Initial Estimated Total Test Duration (days):	13.1	15.1	:Current Total Test Duration (days)	
	(hours):	315.0	363.5	: (hours)	
			-48.5	Delta in Hours (neg	ative is behind)

Jet Propulsion Laboratory

RHRS Loop PRT Overview




Gale Crater

Jet Propulsion Laboratory

Mars Science Laboratory Project

Landing Ellipse

System Test Bed Drills

Jet Propulsion Laboratory

